728x90

https://www.acmicpc.net/problem/1253

 

1253번: 좋다

첫째 줄에는 수의 개수 N(1 ≤ N ≤ 2,000), 두 번째 줄에는 i번째 수를 나타내는 Ai가 N개 주어진다. (|Ai| ≤ 1,000,000,000, Ai는 정수)

www.acmicpc.net

공유기와 비슷하게 함수를 만들고 하나씩 돌아가면서 확인하도록 만들었다.

 

import sys

N = int(sys.stdin.readline().strip())
A = list(map(int, sys.stdin.readline().split()))

A.sort()

result = 0


def isGood(goal):
    left, right = 0, N - 1

    while left < right:
        if A[left] + A[right] == A[goal]:
            if left == goal:
                left += 1
            elif right == goal:
                right -= 1
            else:
                return True
        elif A[left] + A[right] > A[goal]:
            right -= 1
        elif A[left] + A[right] < A[goal]:
            left += 1


for i in range(N):
    result += 1 if isGood(i) is True else 0

print(result)

 

'알고리즘 > 이분탐색' 카테고리의 다른 글

백준 2110 공유기 설치 (Python)  (0) 2024.03.10
백준 1654 랜선 자르기 (Python)  (0) 2024.03.10
백준 2805 나무 자르기 (Python)  (0) 2024.03.10
728x90

https://www.acmicpc.net/problem/2110

 

2110번: 공유기 설치

첫째 줄에 집의 개수 N (2 ≤ N ≤ 200,000)과 공유기의 개수 C (2 ≤ C ≤ N)이 하나 이상의 빈 칸을 사이에 두고 주어진다. 둘째 줄부터 N개의 줄에는 집의 좌표를 나타내는 xi (0 ≤ xi ≤ 1,000,000,000)가

www.acmicpc.net

당연하게 이분 탐색으로 풀었다.

이분탐색을 푸는 루틴이 생긴 것 같다.

우선 함수를 만들고 그 함수를 기준으로 left 쪽으로 갈지, right 쪽으로 갈지 정하는 것이다.

 

이번 문제의 함수에서 반환하는 값은 공유기의 개수이다.

거리를 기준으로 공유기를 놓아보고, 만약 공유기가 더 필요하다면 거리를 늘리는 것이다.

 

import sys

N, M = map(int, sys.stdin.readline().split())

house = []

for i in range(N):
    house.append(int(sys.stdin.readline()))

house.sort()


def wifi(length):
    result = 1
    cur = house[0]
    for i in range(1, N):
        if house[i] >= cur + length:
            cur = house[i]
            result += 1

    return result


left = 1
right = house[-1] - house[0]

while left <= right:
    mid = (left + right) // 2
    cnt = wifi(mid)

    if cnt >= M:
        left = mid + 1
    else:
        right = mid - 1

print(right)

'알고리즘 > 이분탐색' 카테고리의 다른 글

백준 1253 좋다 (Python)  (0) 2024.03.10
백준 1654 랜선 자르기 (Python)  (0) 2024.03.10
백준 2805 나무 자르기 (Python)  (0) 2024.03.10
728x90

https://www.acmicpc.net/problem/1654

 

1654번: 랜선 자르기

첫째 줄에는 오영식이 이미 가지고 있는 랜선의 개수 K, 그리고 필요한 랜선의 개수 N이 입력된다. K는 1이상 10,000이하의 정수이고, N은 1이상 1,000,000이하의 정수이다. 그리고 항상 K ≦ N 이다. 그

www.acmicpc.net

전에 풀었던 나무 자르기와 비슷하다.

당연히 이분탐색으로 바로 풀었고, 결과를 구해주는 함수는 작성했다.

굳이 설명을 더 적지는 않도록 하겠다.

 

import sys

K, N = map(int, sys.stdin.readline().split())

lan = list()
max_lan = 0

for i in range(K):
    cur_lan = int(sys.stdin.readline().strip())
    lan.append(cur_lan)
    max_lan = max(max_lan, cur_lan)


def cur_lan(length):
    result = 0
    for lan_length in lan:
        result += (lan_length // length)
    return result


left, right = 0, max_lan

while left <= right:
    mid = (left + right) // 2
    mid = max(1, mid)
    lan_count = cur_lan(mid)

    if lan_count >= N:
        left = mid + 1
    else:
        right = mid - 1

print(right)

'알고리즘 > 이분탐색' 카테고리의 다른 글

백준 1253 좋다 (Python)  (0) 2024.03.10
백준 2110 공유기 설치 (Python)  (0) 2024.03.10
백준 2805 나무 자르기 (Python)  (0) 2024.03.10
728x90

 

import sys

N, M = map(int, sys.stdin.readline().split())

tree = list(map(int, sys.stdin.readline().split()))


def cut(height):
    result = 0
    for i in tree:
        result += max(0, i - height)
    return result


left, right = 0, max(tree)

while left <= right:
    mid = (left + right) // 2
    cur_height = cut(mid)

    if cur_height >= M:
        left = mid + 1
    else:
        right = mid - 1

print(right)

https://www.acmicpc.net/problem/2805

 

2805번: 나무 자르기

첫째 줄에 나무의 수 N과 상근이가 집으로 가져가려고 하는 나무의 길이 M이 주어진다. (1 ≤ N ≤ 1,000,000, 1 ≤ M ≤ 2,000,000,000) 둘째 줄에는 나무의 높이가 주어진다. 나무의 높이의 합은 항상 M보

www.acmicpc.net

백준 이분 탐색 중에 가장 많이 푼 문제 중 하나일 거 같다.

그냥 Left, Right를 잡고 범위를 좁혀나간 후 푸는 이분탐색 문제이다.

 

얻을 수 있는 나무의 길이를 구하기 위해 높이에 따라 얻는 나무를 구해주는 함수는 만들어서 사용했다.

 

 

 

'알고리즘 > 이분탐색' 카테고리의 다른 글

백준 1253 좋다 (Python)  (0) 2024.03.10
백준 2110 공유기 설치 (Python)  (0) 2024.03.10
백준 1654 랜선 자르기 (Python)  (0) 2024.03.10
728x90

지금까지 배운 것을 바탕으로 성능을 개선해보자.

 

동기적으로 작성된 코드를 비동기적으로 변경하는 것이다.

현재 동기적으로 작성된 코드는 다음과 같다.

public Optional<User> getUserById(String id){
        return userRepository.findById(id)
                .map(user -> {
                    var image = imageRepository.findById(user.getProfileImageId())
                            .map(imageEntity -> {
                                return new Image(imageEntity.getId(), imageEntity.getName(), imageEntity.getUrl());
                            });

                    var articles = articleRepository.findAllByUserId(user.getId())
                            .stream().map(articleEntity ->
                                    new Article(articleEntity.getId(), articleEntity.getTitle(), articleEntity.getContent())).toList();

                    var followCount = followRepository.countByUserID(user.getId());

                    return new User(
                            user.getId(),
                            user.getName(),
                            user.getAge(),
                            image,
                            articles,
                            followCount
                    );
                });
    }

 

Repository에서 가져올 때마다 1초 정도 시간이 걸린다고 생각하여 1초 정도 Thread.sleep을 사용했고, 조회한 값들을 다른 객체에 넣어서 반환하는 메서드이다.

 

차례대로 1초씩 3번 호출하기 때문에 적어도 3초 이상의 시간이 소모될 것이다.

 

    void testGetUser(){
        //given
        String userId = "1234";

        //when
        Optional<User> optionalUser = userBlockingService.getUserById(userId);

        //then
        assertFalse(optionalUser.isEmpty());
        var user = optionalUser.get();
        assertEquals(user.getName(), "sk");

        assertFalse(user.getProfileImage().isEmpty());
        assertFalse(user.getProfileImage().isEmpty());
        var image = user.getProfileImage().get();
        assertEquals(image.getId(), "image#1000");
        assertEquals(image.getName(), "profileImage");
        assertEquals(image.getUrl(), "https://avatars.githubusercontent.com/u/98071131?s=400&u=9107a0b50b52da5bbc8528157eed1cca34feb3c5&v=4");

        assertEquals(2, user.getArticleList().size());

        assertEquals(1000, user.getFollowCount());
    }

 

해당 테스트 코드의 시간을 확인 했을 때 4sec 74ms가 소모되었다.

 

이제 변경해보도록 하자.

일단 각 Repository를 CompletableFuture을 반환하도록 메서드를 변경했다.

    @SneakyThrows
    public CompletableFuture<Optional<UserEntity>> findById(String userId){
        return CompletableFuture.supplyAsync(() -> {
            log.info("UserRepository.findById: {}", userId);
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            }
            var user = userMap.get(userId);
            return Optional.ofNullable(user);
        });
    }

 

 

현재 에러만 잡아서 변경해놓은 코드는 다음과 같다.

    @SneakyThrows
    public Optional<User> getUserById(String id){
        return userRepository.findById(id).get()
                .map(this::getUser);
    }

    @SneakyThrows
    private User getUser(UserEntity user){
        var image = imageRepository.findById(user.getProfileImageId()).get()
                .map(imageEntity -> {
                    return new Image(imageEntity.getId(), imageEntity.getName(), imageEntity.getUrl());
                });

        var articles = articleRepository.findAllByUserId(user.getId()).get()
                .stream().map(articleEntity ->
                        new Article(articleEntity.getId(), articleEntity.getTitle(), articleEntity.getContent())).toList();

        var followCount = followRepository.countByUserID(user.getId()).get();

        return new User(
                user.getId(),
                user.getName(),
                user.getAge(),
                image,
                articles,
                followCount
        );
    }

 

이거를 Repository에 접근 할 때마다 CompletableFuture를 사용했다.

 

    @SneakyThrows
    public CompletableFuture<Optional<User>> getUserById(String id){
        return userRepository.findById(id)
                .thenCompose(this::getUser);
    }

    @SneakyThrows
    private CompletableFuture<Optional<User>> getUser(Optional<UserEntity> userEntityOptional) {
        if (userEntityOptional.isEmpty()) {
            return CompletableFuture.completedFuture(Optional.empty());
        }

        var userEntity = userEntityOptional.get();

        var imageFuture = imageRepository.findById(userEntity.getProfileImageId())
                .thenApplyAsync(imageEntityOptional ->
                        imageEntityOptional.map(imageEntity ->
                                new Image(imageEntity.getId(), imageEntity.getName(), imageEntity.getUrl())
                        )
                );


        var articlesFuture = articleRepository.findAllByUserId(userEntity.getId())
                .thenApplyAsync(articleEntities ->
                        articleEntities.stream()
                                .map(articleEntity ->
                                        new Article(articleEntity.getId(), articleEntity.getTitle(), articleEntity.getContent())
                                )
                                .collect(Collectors.toList())
                );

        var followCountFuture = followRepository.countByUserID(userEntity.getId());

        return CompletableFuture.allOf(imageFuture, articlesFuture, followCountFuture)
                .thenAcceptAsync(v -> {
                    log.info("Three futures are completed");
                })
                .thenRunAsync(() -> {
                    log.info("Three futures are also completed");
                })
                .thenApplyAsync(v -> {
                    try {
                        var image = imageFuture.get();
                        var articles = articlesFuture.get();
                        var followCount = followCountFuture.get();

                        return Optional.of(
                                new User(
                                        userEntity.getId(),
                                        userEntity.getName(),
                                        userEntity.getAge(),
                                        image,
                                        articles,
                                        followCount
                                )
                        );
                    } catch (Exception e) {
                        throw new RuntimeException(e);
                    }
                });
    }
}

 

이렇게 변경하고 전에 사용했던 테스트 코드의 시간을 측정해보았다.

 

거의 반으로 줄어든 2sec 66ms가 나왔다.

 

전 코드에서 Repository에 접근 하는 것을 기다리기 보다 비동기적으로 실행한다면 시간을 크게 줄일 수 있는 것을 볼 수 있었던 것 같다.

'백엔드 > 리액티브 프로그래밍' 카테고리의 다른 글

ColdPublisher 구현  (0) 2024.03.13
Publisher, Subscriber에 대하여  (0) 2024.03.12
CompletableFuture 인터페이스  (1) 2024.03.06
CompletionStage 인터페이스  (1) 2024.03.05
Future 인터페이스  (1) 2024.01.09
728x90

CompletableFuture 클래스

우선 주요 메서드 먼저 살펴보고 가도록 하자.

public class CompletableFuture<T> implements Future<T>, CompletionStage<T>{
    public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier) {
        return asyncSupplyStage(ASYNC_POOL, supplier);
    }

	public static CompletableFuture<Void> runAsync(Runnable runnable) {
        return asyncRunStage(ASYNC_POOL, runnable);
    }
    
    public boolean complete(T value) {
        boolean triggered = completeValue(value);
        postComplete();
        return triggered;
    }
    
    public boolean isCompletedExceptionally() {
        Object r;
        return ((r = result) instanceof AltResult) && r != NIL;
    }
    
    public static CompletableFuture<Void> allOf(CompletableFuture<?>... cfs) {
        return andTree(cfs, 0, cfs.length - 1);
    }
    
    public static CompletableFuture<Object> anyOf(CompletableFuture<?>... cfs) {
        int n; Object r;
        if ((n = cfs.length) <= 1)
            return (n == 0)
                ? new CompletableFuture<Object>()
                : uniCopyStage(cfs[0]);
        for (CompletableFuture<?> cf : cfs)
            if ((r = cf.result) != null)
                return new CompletableFuture<Object>(encodeRelay(r));
        cfs = cfs.clone();
        CompletableFuture<Object> d = new CompletableFuture<>();
        for (CompletableFuture<?> cf : cfs)
            cf.unipush(new AnyOf(d, cf, cfs));
        // If d was completed while we were adding completions, we should
        // clean the stack of any sources that may have had completions
        // pushed on their stack after d was completed.
        if (d.result != null)
            for (int i = 0, len = cfs.length; i < len; i++)
                if (cfs[i].result != null)
                    for (i++; i < len; i++)
                        if (cfs[i].result == null)
                            cfs[i].cleanStack();
        return d;
    }
}

 

 

supplyAsync

 

    public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier) {
        return asyncSupplyStage(ASYNC_POOL, supplier);
    }

 

이렇게 구성이 되어 있었다.

 

보면 알 수 있듯이, 파라미터를 받지 않고도 결과를 만들어서 다음 task에 전달해준다.

 

runAsync

 

	public static CompletableFuture<Void> runAsync(Runnable runnable) {
        return asyncRunStage(ASYNC_POOL, runnable);
    }

 

Runnable과 비슷하다.

값을 받지도, 값을 리턴하지도 않고 수행만 하게 된다.

 

complete

 

CompletableFuture가 완료되지 않았다면 주어진 값으로 채운다.

리턴되는 Boolean은 complete에 의해 상태가 바뀌었다면 true, 아니라면 false를 반환한다.

    public boolean complete(T value) {
        boolean triggered = completeValue(value);
        postComplete();
        return triggered;
    }

 

isCompletedExceptionally

 

CompletableFuture가 에러로 인해 중지가 되었는지 Boolean으로 반환하는 메서드이다.

var futureWithException = CompletableFuture.supplyAsync(() -> 1 / 0);

Thread.sleep(1000);

assert futureWithException.isDone();
assert futureWithException.isCompletedExceptionally();

 

이런식의 코드를 작성하여 확인 할 수 있다.

 

allOf

 

여러개의 CompletableFuture를 모아서 하나의 CompletableFuture로 변환할 수 있다.

모든 CompletableFuture가 완료되면 상태가 done으로 변경된다.

반환하는 값은 없기 때문에 각각의 값에 다시 접근하여 get으로 값을 가져와야 한다.

 

allOf를 테스트 해보기 위해 코드를 작성해서 확인해보자.

@Slf4j
public class A {

    @SneakyThrows
    public static void main(String[] args) {

        var startTime = System.currentTimeMillis();

        var firstFuture = waitAndReturn(100, 1);
        var secondFuture = waitAndReturn(500, 2);
        var thirdFuture = waitAndReturn(1000, 3);

        CompletableFuture.allOf(firstFuture, secondFuture, thirdFuture)
                .thenAcceptAsync(v -> {
                    try{
                        log.info("first: {}", firstFuture.get());
                        log.info("second: {}", secondFuture.get());
                        log.info("third: {}", thirdFuture.get());
                    }catch (Exception e){
                        throw new RuntimeException(e);
                    }
                }).join();

        var endTime = System.currentTimeMillis();

        log.info("time: {}", endTime - startTime);
    }

    public static CompletableFuture<Integer> waitAndReturn(int time, int value) {
        return CompletableFuture.supplyAsync(() -> {
            try {
                Thread.sleep(time);
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            }
            return value;
        });
    }
}

 

해당 코드를 실행하면 다음과 같이 나온다.

 

차례차례 실행이 된 100 + 500 + 1000이 아닌 1000에 가까운 값이 나오는 것을 볼 수 있다.

 

anyOf

 

allOf와는 다르게 가장 먼저 끝난 Future의 값을 제공해준다.

 

방금과 비슷한 코드를 실행해보면

@Slf4j
public class A {

    @SneakyThrows
    public static void main(String[] args) {

        var startTime = System.currentTimeMillis();

        var firstFuture = waitAndReturn(100, 1);
        var secondFuture = waitAndReturn(500, 2);
        var thirdFuture = waitAndReturn(1000, 3);

        CompletableFuture.anyOf(firstFuture, secondFuture, thirdFuture)
                .thenAcceptAsync(v -> {
                    try{
                        log.info("Hi FirstValue");
                        log.info("value: {}", v);
                    }catch (Exception e){
                        throw new RuntimeException(e);
                    }
                }).join();

        var endTime = System.currentTimeMillis();

        log.info("time: {}", endTime - startTime);
    }

    public static CompletableFuture<Integer> waitAndReturn(int time, int value) {
        return CompletableFuture.supplyAsync(() -> {
            try {
                Thread.sleep(time);
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            }
            return value;
        });
    }
}

 

 

가장 빨리 실행이 되는 Future만 가져오는 것을 볼 수 있다.

 

 

728x90

https://seungkyu-han.tistory.com/111

 

Future 인터페이스

자바에서 비동기 프로그래밍을 하기 위해 알아야 하는 Future 인터페이스에 대해 알아보자. Method reference :: 연산자를 이용해서 함수에 대한 참조를 간결하게 포현한 것이다. package org.example; import j

seungkyu-han.tistory.com

저번 내용을 읽어보면 도움이 될 것이다.

 

CompletionStage

public interface CompletionStage<T> {

    public <U> CompletionStage<U> thenApply(Function<? super T,? extends U> fn);

    public <U> CompletionStage<U> thenApplyAsync(Function<? super T,? extends U> fn);

    public CompletionStage<Void> thenAccept(Consumer<? super T> action);

    public CompletionStage<Void> thenAcceptAsync(Consumer<? super T> action);

    public CompletionStage<Void> thenRun(Runnable action);

    public CompletionStage<Void> thenRunAsync(Runnable action);

    public <U> CompletionStage<U> thenCompose(Function<? super T, ? extends CompletionStage<U>> fn);

    public <U> CompletionStage<U> thenComposeAsync(Function<? super T, ? extends CompletionStage<U>> fn);

    public CompletionStage<T> exceptionally(Function<Throwable, ? extends T> fn);
}

CompletionStage 인터페이스는 이렇게 구성이 되어 있다.

 

차례로 내려가면서 실행하기 때문에 각각 파이프 하나의 단계라고 생각하면 될 것이다.

저번 내용과 다르게, 결과를 직접적으로 가져올 수 없기 때문에 비동기 프로그래밍이 가능하게 된다.

또한 Non-blocking으로 프로그래밍하기 위해서는 별도의 쓰레드가 필요하다.

Completable은 내부적으로 FokJoinPool을 사용한다.

할당된 CPU 코어 - 1 에 해당하는 쓰레드를 관리하는 것이다.

이렇게 다른 쓰레드에서 실행이 되기 때문에 Non-blocking 프로그래밍도 가능하게 해준다.

 

CompletionStage와 함수형 인터페이스

저번에 배웠던 함수형 인터페이스와 관련하여 각각 CompletionStage와 연결된다.

Consumer - accept -> thenAccept(Consumer action) void 반환
Function - apply -> thenApply(Function fn) 다른 타입 반환
Function - compose -> thenCompose(Function fn) Completion의 결과값
Runnable - run -> thenRun(Runnable action) void 반환

 

thenAccept[Async]

  • Consumer를 파라미터로 받는다.
  • 이전 task로부터 값을 받지만, 값을 넘기지는 않는다.
  • 다음 task에게 null이 전달된다.
  • 값을 받아서 action만 하는 경우에 사용한다.
@FunctionalInterface
public interface Consumer<T> {
    void accept(T t);
}

 

해당 Consumer를 파라미터로 받는다.

 

    public CompletionStage<Void> thenAccept(Consumer<? super T> action);
    public CompletionStage<Void> thenAcceptAsync(Consumer<? super T> action);
    public CompletionStage<Void> thenAcceptAsync(Consumer<? super T> action,
                                                 Executor executor);

 

thenAccept도 하나만 있는 것이 아니라, 3개가 존재한다.

일단 [Async]에 대해서만 확인해보자.

 

@Slf4j
public class A {

    //future 종료된 후에 반환
    public static CompletionStage<Integer> finishedStage() throws InterruptedException {
        var future = CompletableFuture.supplyAsync(() -> {
            log.info("supplyAsync");
            return 1;
        });
        Thread.sleep(100);
        return future;
    }

    //future 종료되기 전에 반환
    public static CompletionStage<Integer> runningStage(){
        return CompletableFuture.supplyAsync(() -> {
            try{
                Thread.sleep(1000);
                log.info("I'm Running!");
            } catch (InterruptedException e){
                throw new RuntimeException(e);
            }
            return 1;
        });
    }

    public static void main(String[] args) throws InterruptedException {

        System.out.println("thenAccept");

        log.info("start thenAccept");
        CompletionStage<Integer> acceptStage = finishedStage();
        acceptStage.thenAccept(i -> {
            log.info("{} in thenAccept", i);
        }).thenAccept(i -> {
            log.info("{} in thenAccept2", i);
        });
        log.info("after thenAccept");

        System.out.println("thenAcceptAsync");

        log.info("start thenAcceptAsync");
        CompletionStage<Integer> acceptAsyncStage = finishedStage();
        acceptAsyncStage.thenAcceptAsync(i -> {
            log.info("{} in thenAcceptAsync", i);
        }).thenAcceptAsync(i -> {
            log.info("{} in thenAcceptAsync2", i);
        });
        log.info("after thenAccept");
    }
}

 

해당코드를 통해 알아보겠다.

종료된 Stage를 사용하여 thenAccept, thenAcceptAsync 2개를 확인해보았다.

 

일단 thenAccept는 반환값이 없기 때문에 2부터는 null이 찍히는 것을 볼 수 있다.

 

그리고 이 두개의 차이는 다음과 같다.

thenAccept는 Future가 완료된 상태라면, caller와 같은 쓰레드에서 실행이 된다.

그렇기 때문에 동기적으로 차례대로 시작된 것을 볼 수 있다.

thenAcceptAsync는 그냥 상태에 상관없이, 그냥 남는 쓰레드에서 실행이 된다.

 

해당 코드로 바꾸어 실행해보자.

        System.out.println("thenAccept Running");

        log.info("start thenAccept Running");
        CompletionStage<Integer> acceptRunningStage = runningStage();
        acceptRunningStage.thenAccept(i -> {
            log.info("{} in thenAccept Running", i);
        }).thenAccept(i -> {
            log.info("{} in thenAccept2 Running", i);
        });
        log.info("after thenAccept");

        Thread.sleep(2000);

        System.out.println("thenAcceptAsync");

        log.info("start thenAcceptAsync Running");
        CompletionStage<Integer> acceptAsyncRunningStage = runningStage();
        acceptAsyncRunningStage.thenAcceptAsync(i -> {
            log.info("{} in thenAcceptAsync Running", i);
        }).thenAcceptAsync(i -> {
            log.info("{} in thenAcceptAsync2 Running", i);
        });
        log.info("after thenAccept");

        Thread.sleep(2000);

 

해당 코드를 실행하면 다음과 같은 결과가 나온다.

 

위와는 다르게 Future가 종료되지 않았다면, thenAccept는 callee에서 실행이 되게 된다.

 

이를 통해, Async는 그냥 thread pool에서 가져와서 실행이 되며 Async가 아니면 stage의 상태에 따라 나뉘는 것을 볼 수 있다.

stage가 실행중이라면, 호출한 caller 쓰레드에서 실행이 된다.

stage가 실행중이 아니라면, 호출된 caller 쓰레드에서 실행이 되게 된다.

 

위에서 마지막에 있던 메서드 중에 파라미터가 하나 더 있던 메서드가 있었다.

executor를 넘겨주는 것인데, 해당 action이 실행될 쓰레드를 지정해주는 것이다.

@Slf4j
public class B {

    @SneakyThrows
    public static void main(String[] args) {
        var single = Executors.newSingleThreadExecutor();
        var fixed = Executors.newFixedThreadPool(10);

        log.info("start main");
        CompletionStage<Integer> stage = CompletableFuture.supplyAsync(() -> {
            log.info("supplyAsync");
            return 1;
        });

        stage
                .thenAcceptAsync(i -> {
                    log.info("{} in thenAcceptAsync", i);
                }, fixed).thenAcceptAsync(i -> {
                    log.info("{} in thenAcceptAsync", i);
                }, single);

        log.info("after thenAccept");
        Thread.sleep(2000);

        single.shutdown();
        fixed.shutdown();
    }
}

 

해당 코드를 실행해보면

이렇게 지정된 쓰레드에서 실행이 되는 것을 볼 수 있다.

 

thenApply[Async]

  • Function를 파라미터로 받는다.
  • 이전 task로부터 T 타입의 값을 받아서 가공하고 U 타입의 값을 반환한다.
  • 다음 task에게 반환했던 값이 전달된다.
  • 값을 변형해서 전달해야 하는 경우 유용하다.
@FunctionalInterface
public interface Function<T, R> {
    R apply(T t);
}

 

해당 Function을 파라미터로 받는다.

 

    public <U> CompletionStage<U> thenApply(Function<? super T,? extends U> fn);

    public <U> CompletionStage<U> thenApplyAsync
        (Function<? super T,? extends U> fn);

    public <U> CompletionStage<U> thenApplyAsync
        (Function<? super T,? extends U> fn,
         Executor executor);

 

메서드가 다음과 같이 있다.

 

해당 메서드들을 하면서 확인해보자.

@Slf4j
public class C {
    public static void main(String[] args) throws InterruptedException {
        CompletionStage<Integer> stage = CompletableFuture.supplyAsync(() -> 1);

        stage.thenApplyAsync(value -> {
            var next = value + 1;
            log.info("in thenApplyAsync : {}", next);
            return next;
        }).thenApplyAsync(value -> {
            var next = "result: " + value;
            log.info("in thenApplyAsync2 : {}", next);
            return next;
        }).thenApplyAsync(value -> {
            var next = value.equals("result: 2");
            log.info("in thenApplyAsync3 : {}", next);
            return next;
        }).thenAcceptAsync(value -> {
            log.info("final: {}", value);
        });

        Thread.sleep(2000);
    }
}

 

해당 코드를 실행하면 다음과 같다.

 

thenApply는 다른 타입을 주고 받는 것이 가능한 것을 볼 수 있다.

 

thenCompose[Async]

  • Function를 파라미터로 받는다.
  • 이전 task로부터 T 타입의 값을 받아서 가공하고 U 타입의 CompletionStage를 반환한다.
  • 반환한 CompletionStage가 done 상태가 되면 값을 다음 task에 전달한다.
  • 다른 future를 반환해야 하는 경우 유용하다.
    public <U> CompletionStage<U> thenCompose
        (Function<? super T, ? extends CompletionStage<U>> fn);

    public <U> CompletionStage<U> thenComposeAsync
        (Function<? super T, ? extends CompletionStage<U>> fn);

    public <U> CompletionStage<U> thenComposeAsync
        (Function<? super T, ? extends CompletionStage<U>> fn,
         Executor executor);

 

그냥 Future를 반환하며, 해당 Future가 끝날 때까지 기다렸다가 준다는 것이다.

 

@Slf4j
public class D {

    public static CompletionStage<Integer> addValue(int number, int value){
        return CompletableFuture.supplyAsync(() -> {
            try{
                Thread.sleep(100);
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            }
            return number + value;
        });
    }

    public static void main(String[] args) throws InterruptedException {
        CompletionStage<Integer> stage = CompletableFuture.supplyAsync(() -> 1);

        stage.thenComposeAsync(value -> {
            var next = addValue(value, 1);
            log.info("in thenComposeAsync: {}", next);
            return next;
        }).thenComposeAsync(value -> {
            var next = CompletableFuture.supplyAsync(() -> {
                try{
                    Thread.sleep(100);
                } catch (InterruptedException e) {
                    throw new RuntimeException(e);
                }
                return "result: " + value;
            });
            log.info("in thenComposeAsync: {}", next);
            return next;
        }).thenAcceptAsync(value -> log.info("{} in then AcceptAsync", value));

        Thread.sleep(2000);
    }
}

 

해당 코드를 실행해보면

 

다음과 같이 출력이 되는데, 마지막에 result: 2로 Future가 완료된 후의 값을 가져온 것을 볼 수 있다.

 

thenRun[Async]

  • Runnable을 파라미터로 받는다.
  • 이전 task로부터 값을 받지 않고 값을 반환하지 않는다.
  • 다음 task에게 null이 전달된다.
  • future가 완료되었다는 이벤트를 기록할 때 유용하다.

Runnable 인터페이스이다.

@FunctionalInterface
public interface Runnable {
    public abstract void run();
}

 

받는 것도 주는 것도 없는 것을 볼 수 있다.

 

당연히 큰 역할을 하기보다, 그냥 로그? 이벤트 기록 용으로 사용한다고 한다.

 

@Slf4j
public class E {

    public static void main(String[] args) throws InterruptedException {
        CompletionStage<Integer> stage = CompletableFuture.supplyAsync(() -> 1);

        stage.thenRunAsync(() -> log.info("in thenRunAsync"))
                .thenRunAsync(() -> log.info("in thenRunAsync2"))
                .thenAcceptAsync(value -> log.info("{} in thenAcceptAsync", value));

        Thread.sleep(2000);
    }
}

 

해당 코드를 실행해보면

 

그냥 주지도, 받지도 않는 것을 볼 수 있다.

 

exceptionally

  • Function을 파라미터로 받는다.
  • 이전 task에서 발생한 exception을 받아서 처리하고 값을 반환한다.
  • 다음 task에게 반환된 값을 전달한다.
  • future 파이프에서 발생한 에러를 처리할 때 유용하다.
    public CompletionStage<T> exceptionally
        (Function<Throwable, ? extends T> fn);

 

간단하게 해당 에러를 발생하는 코드를 만들어보면

@Slf4j
public class F {

    public static void main(String[] args) throws InterruptedException {
        CompletionStage<Integer> stage = CompletableFuture.supplyAsync(() -> 1);

        stage.thenApplyAsync(i -> {
            log.info("in then ApplyAsync");
            return i / 0;
        }).exceptionally(e -> {
            log.info("{} in exceptionally", e.getMessage());
            return 0;
        }).thenAcceptAsync(value -> {
            log.info("{} in thenAcceptAsync", value);
        });

        Thread.sleep(2000);
    }
}

 

이러한 결과가 나오는 것을 볼 수 있다.

728x90

https://www.acmicpc.net/problem/2023

 

2023번: 신기한 소수

수빈이가 세상에서 가장 좋아하는 것은 소수이고, 취미는 소수를 가지고 노는 것이다. 요즘 수빈이가 가장 관심있어 하는 소수는 7331이다. 7331은 소수인데, 신기하게도 733도 소수이고, 73도 소수

www.acmicpc.net

뻗어 나가는 느낌으로 풀었다.

다양한 길이를 가져야 하기 때문에 함수를 이용해서 풀 수 있도록 하였다.

 

소수를 판정 할 때, 어차피 계산 한 부분은 안 할 거 같아서 굳이 에라토스테네스의 체를 쓰지는 않았다.

 

함수를 이용해서, 만약 길이가 N이라면 해당 수를 바로 출력하고 아니라면 뒤에 수를 계속 붙여주는 방법으로 풀었다.

어차피 앞 부분은 이미 소수일 테니까, 해당 수가 소수인지만 판별을 진행했다.

 

import sys

N = int(sys.stdin.readline().strip())

prime = [2, 3, 5, 7]


def is_prime(number):
    for i in range(2, int(number ** 0.5) + 1):
        if number % i == 0:
            return False
    return True


def wow_prime(cur_number):
    if len(str(cur_number)) == N:
        print(cur_number)
    else:
        for t in range(1, 10):
            if t % 2 != 0 and is_prime(cur_number * 10 + t):
                wow_prime(cur_number * 10 + t)


for i in prime:
    wow_prime(i)

+ Recent posts